

Lipidomique Sanguine et Métabolomique du **Cancer Colorectal par GC×GC-LR/HR-TOFMS**

Kinjal Bhatt¹, Titziana Orlando¹, Marie-Alice Meuwis², Edouard Louis², Pierre-Hugues Stefanuto¹, and Jean-François Focant¹

¹Organic and Biological Analytical Chemistry Group, University of Liège, Belgium ²GIGA institute, Translational Gastroenterology and CHU de Liege, Hepato-Gastroenterology and Digestive Oncology, Liège University, Belgium

> **GREEN ANALYTICAL CHEMISTRY WORKSHOP** www.tgacworkshop-paris.com 5/6 FEBRUARY. 2024 - NOVOTEL PARIS CHARENTON

Acknowledgments

GC×GC-(HR)TOFMS

GC×GC-TOFMS Principle

Inside the normal GC oven -Modulator -Secondary oven

Number of papers (Scopus - (15/01/24)

Scopus

V

The Big Picture – Medical Applications

The role of sample preparation in multidimensional gas chromatographic separations for non-targeted analysis with the focus on recent biomedical, food, and plant applications Flavio A. Franchina 💿 🕴 Delphine Zanella 🔍 🕴 Lena M. Dubois 🔍 🗍 Jean-François Focant 🔍

SEPARATION SCIENCE

Colorectal Cancer Screening

Colorectal Cancer (CRC)

Estimated New Cases

			Males	Females			
Prostate	288,300	29%			Breast	297,790	31%
Lung & bronchus	117,550	12%			Lung & bronchus	120,790	13%
Colon & rectum	81,860	8%		X	Colon & rectum	71,160	8%
Urinary bladder	62,420	6%			Uterine corpus	66,200	7%
Melanoma of the skin	58,120	6%			Melanoma of the skin	39,490	4%
Kidney & renal pelvis	52,360	5%			Non-Hodgkin lymphoma	35,670	4%
Non-Hodgkin lymphoma	44,880	4%			Thyroid	31,180	3%
Oral cavity & pharynx	39,290	4%			Pancreas	30,920	3%
Leukemia	35,670	4%			Kidney & renal pelvis	29,440	3%
Pancreas	33,130	3%			Leukemia	23,940	3%
All Sites	1,010,310	100%			All Sites	948,000	100%

Estimated Deaths

			Males	Females			
Lung & bronchus	67,160	21%			Lung & bronchus	59,910	21%
Prostate	34,700	11%			Breast	43,170	15%
Colon & rectum	28,470	9%		X	Colon & rectum	24,080	8%
Pancreas	26,620	8%			Pancreas	23,930	8%
Liver & intrahepatic bile duct	19,000	6%			Ovary	13,270	5%
Leukemia	13,900	4%			Uterine corpus	13,030	5%
Esophagus	12,920	4%			Liver & intrahepatic bile duct	10,380	4%
Urinary bladder	12,160	4%			Leukemia	9,810	3%
Non-Hodgkin lymphoma	11,780	4%			Non-Hodgkin lymphoma	8,400	3%
Brain & other nervous system	11,020	3%			Brain & other nervous system	7,970	3%
All Sites	322,080	100%			All Sites	287,740	100%

Cancer Statistics 2023. CA Cancer J Clin 2023

Classification & Monitoring Methods of CRC

Blood Metabolomics & Lipidomics (Colorectal Cancer)

Identification and annotation

Sample Categories

QA/QC Implementation

Metabolomics (2022) 18: 70 https://doi.org/10.1007/s11306-022-01926-3

REVIEW ARTICLE

Quality assurance and quality control reporting in untargeted metabolic phenotyping: mQACC recommendations for analytical quality management

Jennifer A. Kirwan^{1,23}. Helen Gika^{4,5}. Richard D. Beger⁶. Dan Bearden⁷. Warwick B. Dunn⁸. Royston Goodacre⁸. Georgios Theodoridis^{6,5}. Michael Witting¹⁰. Li-Rong Yu⁶. Ian D. Wilson^{8,11} on behalf of the metabolomics Quality Assurance and Quality Control Consortium (mQACC)

Step-1 Identification assurance, check for carry over

Step-2 Baseline for QC Chart

Step-3 Randomized sample analysis with QC samples

> **Step-4** Repeating step 1 to check the system stability

Check for updates

QC Charting Lipidomics Pooled Human Plasma

Sample Preparation Workflow (Metabolomics)

Supporting Information

Sample Preparation Workflow (Lipidomics)

Structured Separation of FAMEs (NIST SRM 1950)

Unsupervised Lipidomics PCA

<u>40 analytes (13 SFA, 9 MUFA, 6 PUFA ω -3, 8 PUFA ω -6, 1 PUFA ω -9, 3 cholestadiene isomers)</u>

Feature Selection Lipidomics (PLS-DA, RF)

Potential ID	Class	CAS	Similarity	Reverse	Probability (%)	∆ LRI	Mass accuracy (ppm)	(FDR)<0.05	VIP Score (>1)	RF, MDA (>0.008)
C20:4 n-3	PUFA (ω -3)	132712-70-0	882	875	30.1	12	-	$2.6 imes 10^{-4}$	1.9847	0.019331
C20:5 n-3*	PUFA (ω -3)	2734-47-6	890	892	58.5	8	-1.17	$1.1 imes 10^{-11}$	2.8251	0.079084
C22:5 n-3	PUFA (ω -3)	108698-02-8	851	851	74.1	13	-	$5.3 imes 10^{-3}$	2.1896	0.032492
C22:6 n-3*	PUFA (ω -3)	2566-90-7	900	910	72.9	16	-1.01	2.0×10^{-3}	1.6093	0.019366
C18:3 n-6*	PUFA (ω-6)	16326-32-2	875	875	56.3	11	0.74	$9.7 imes 10^{-8}$	2.4366	0.046362
C20:3 n-6*	PUFA (ω-6)	21061-10-9	919	907	69.7	12	-1.03	$7.5 imes 10^{-8}$	1.9479	0.036985
C22:5 n-6	PUFA (ω -6)	-	897	883	28.6	18	-	$7.5 imes 10^{-8}$	2.2631	0.044829
C18:0*	SFA	112-61-8	925	955	84.3	1	0.37	$7.0 imes 10^{-3}$	1.1598	0.0087911

Top <u>8 selected features</u>

Feature Selection Lipidomics (PLS-DA, RF)

Feature Selection Lipidomics (PLS-DA, RF) PCA

Random Forest Cross-Validation Lipidomics

Quantitative Enrichment Analysis (QEA)

Feature Selection Metabolomics (PLS-DA, RF) PCA

Feature Selection Metabolomics (PLS-DA, RF)

Quantitative Enrichment Analysis (QEA)

Take Home Messages: Performances

- GC×GC-(HR)TOFMS can contribute to the study CRC metabolomics/lipidomics
- Complementary QEA can be performed (different pathways)
- Lipidomics gives insights on cancer stages...
- Lipidomics is faster and readily automated
- Lipidomics is more easily transferable to ¹DGC-MS
- Metabolmomics is more comprehensive...

Take Home Messages: How Green is all this ?

- 'Quick and dirty' estimates...
- GC×GC-(HR)TOFMS = MS 1 Kwh + GC 3 Kwh (GCxGC option 0.3 kW) (CF 1.5kW) + Computer 0.5 Kwh = 4.8 Kwh/day (LECO Corp.)
- LC-MS/MS = 5 Kwh/day (my greenlab.org)
- GC-MSD = 8 Kwh/day (Agilent)
- ... need for some accurate 'apple to apple comparison'

Application of green metrics?!

Recent efforts to increase greeness in chromatography, Napolitano-Tabares et al., 2021

on and Sustai

Recent efforts to increase greeness in chromatography, Napolitano-Tabares et al., 2021

